Tests
- LinearAlgebra/addmul/mul!(::Matrix{Float64}, ::LinearAlgebra.UnitUpperTriangular{Int64, S} where S<:AbstractMatrix{Int64}, ::Matrix{Float32}, α, β)/α = 1.0, β = -0.9249935013871234/adjoint and transpose/fa = transpose, fb = identity @test ≈(collect(returned_mat), exp_val, rtol = rtol, atol = atol)stdlib/LinearAlgebra/test/addmul.jl:145github100% reliable0μs average duration
- sets/replace! & replace @test replace!((x->begin #= /cache/build/tester-amdci5-8/julialang/julia-master/julia-a046da5f25/share/julia/test/sets.jl:863 =# 2x end), Set([3, 6])) == Set([6, 12])share/julia/test/sets.jl:863github100% reliable0μs average duration
- LinearAlgebra/triangular3/elty1 = ComplexF32/(t1, uplo1) = (LinearAlgebra.UpperTriangular, :U) @test sqrt(A1) |> (t->begin #= C:\buildkite-agent\builds\win2k22-amdci6-5\julialang\julia-master\julia-d48fd5e4a6\share\julia\stdlib\v1.13\LinearAlgebra\test\testtriag.jl:285 =# (t * t)::typeof(t) end) ≈ A1stdlib/LinearAlgebra/test/testtriag.jl:285github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{Float64}, ::LinearAlgebra.SymTridiagonal{Float32, V} where V<:AbstractVector{Float32}, ::LinearAlgebra.Symmetric{Float64, S} where S<:(AbstractMatrix{<:Float64}), α, β)/α = 0.4176574765028711, β = 0.0/adjoint and transpose/fa = adjoint, fb = transpose @test ≈(collect(returned_mat), exp_val, rtol = rtol, atol = atol)stdlib/LinearAlgebra/test/addmul.jl:145github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{BigFloat}, ::LinearAlgebra.UnitUpperTriangular{Int32, S} where S<:AbstractMatrix{Int32}, ::LinearAlgebra.Symmetric{Float64, S} where S<:(AbstractMatrix{<:Float64}), α, β)/α = 1.0, β = false/adjoint and transpose/fa = transpose, fb = adjoint @test ≈(collect(returned_mat), exp_val, rtol = rtol, atol = atol)stdlib/LinearAlgebra/test/addmul.jl:145github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{ComplexF64}, ::LinearAlgebra.UpperTriangular{Float32, S} where S<:AbstractMatrix{Float32}, ::Matrix{Int64}, α, β)/α = true, β = 0.0 + 0.0im/adjoint and transpose/fa = identity, fb = transpose @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{Float64}, ::LinearAlgebra.Bidiagonal{Int64, V} where V<:AbstractVector{Int64}, ::LinearAlgebra.Symmetric{Int64, S} where S<:(AbstractMatrix{<:Int64}), α, β)/α = -1.5549152375981963, β = false/adjoint and transpose/fa = identity, fb = adjoint @test ≈(collect(returned_mat), exp_val, rtol = rtol, atol = atol)stdlib/LinearAlgebra/test/addmul.jl:145github100% reliable0μs average duration
- Printf/Printf/dynamic @test #= /cache/build/tester-amdci4-9/julialang/julia-master/julia-7fa969ab3c/share/julia/stdlib/v1.13/Printf/test/runtests.jl:906 =# Printf.@sprintf("%-*s", 20, "Hallo") == #= /cache/build/tester-amdci4-9/julialang/julia-master/julia-7fa969ab3c/share/julia/stdlib/v1.13/Printf/test/runtests.jl:906 =# Printf.@sprintf("%-20s", "Hallo")stdlib/Printf/test/runtests.jl:906github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{Float64}, ::LinearAlgebra.SymTridiagonal{Float64, V} where V<:AbstractVector{Float64}, ::LinearAlgebra.UnitLowerTriangular{Float32, S} where S<:AbstractMatrix{Float32}, α, β)/α = -0.6653404187929869, β = 0.0/adjoint and transpose/fa = adjoint, fb = adjoint @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{ComplexF64}, ::LinearAlgebra.Diagonal{ComplexF32, V} where V<:AbstractVector{ComplexF32}, ::LinearAlgebra.Hermitian{ComplexF32, S} where S<:(AbstractMatrix{<:ComplexF32}), α, β)/α = true, β = 0.7451718078889245 + 0.170772547644648im/adjoint and transpose/fa = identity, fb = transpose @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::LinearAlgebra.UpperTriangular{BigFloat, S} where S<:AbstractMatrix{BigFloat}, ::LinearAlgebra.Diagonal{Float32, V} where V<:AbstractVector{Float32}, ::LinearAlgebra.UpperTriangular{Float64, S} where S<:AbstractMatrix{Float64}, α, β)/α = true, β = -0.12271736566646064547914107834003516472876071929931640625/α = 0 ignores A .= NaN @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- LinearAlgebra/diagonal/relty = BigFloat, elty = Complex{BigFloat}/Binary operations @test begin r = (Matrix(D))' * vv #= /cache/build/default-aws-aarch64-ci-1-2/julialang/julia-master/julia-916fe7d35d/share/julia/stdlib/v1.13/LinearAlgebra/test/diagonal.jl:287 =# mul!(vvv, adjoint(D), vv) ≈ r ≈ vvv endstdlib/LinearAlgebra/test/diagonal.jl:287github100% reliable0μs average duration
- SparseArrays/higherorderfns/map[!] implementation capable of handling >2 (input) sparse vectors/matrices @test #= C:\buildkite-agent\builds\win2k22-amdci6-5\julialang\julia-master\julia-d17b0e143d\share\julia\stdlib\v1.13\SparseArrays\test\higherorderfns.jl:95 =# @allocated(map!(+, X, A, B, C)) < 500stdlib/SparseArrays/test/higherorderfns.jl:95github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{Float64}, ::LinearAlgebra.LowerTriangular{Float64, S} where S<:AbstractMatrix{Float64}, ::LinearAlgebra.Diagonal{Float64, V} where V<:AbstractVector{Float64}, α, β)/α = -2.331769949064681, β = 0.0/adjoint and transpose/fa = transpose, fb = identity @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- Dates/ranges @test map(length, drs) == map((x->begin #= /Users/julia/.julia/scratchspaces/a66863c6-20e8-4ff4-8a62-49f30b1f605e/agent-cache/default-honeycrisp-R17H3W25T9.0/build/default-honeycrisp-R17H3W25T9-0/julialang/julia-master/julia-41d5e6cd71/share/julia/stdlib/v1.13/Dates/test/ranges.jl:295 =# (size(x))[1] end), drs)stdlib/Dates/test/ranges.jl:295github100% reliable0μs average duration
- Printf/Printf/integers @test #= C:\buildkite-agent\builds\win2k22-amdci6-6\julialang\julia-master\julia-123a556434\share\julia\stdlib\v1.13\Printf\test\runtests.jl:782 =# Printf.@sprintf("%20d", typemax(Int64)) == " 9223372036854775807"stdlib/Printf/test/runtests.jl:782github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::LinearAlgebra.UpperTriangular{Float64, S} where S<:AbstractMatrix{Float64}, ::LinearAlgebra.UnitUpperTriangular{Float64, S} where S<:AbstractMatrix{Float64}, ::LinearAlgebra.UnitUpperTriangular{Float32, S} where S<:AbstractMatrix{Float32}, α, β)/α = 0.9586609904195387, β = 0.9586609904195387/β = 0 ignores C .= NaN @test returned_mat === Ccopystdlib/LinearAlgebra/test/addmul.jl:141github100% reliable0μs average duration
- Compiler/inline/is_declared_[no]inline @test is_declared_inline(only(methods(#= /Users/julia/.julia/scratchspaces/a66863c6-20e8-4ff4-8a62-49f30b1f605e/agent-cache/default-honeycrisp-R17H3W25T9.0/build/default-honeycrisp-R17H3W25T9-0/julialang/julia-master/julia-626d541de6/share/julia/Compiler/test/inline.jl:284 =# @inline(function f(x) #= /Users/julia/.julia/scratchspaces/a66863c6-20e8-4ff4-8a62-49f30b1f605e/agent-cache/default-honeycrisp-R17H3W25T9.0/build/default-honeycrisp-R17H3W25T9-0/julialang/julia-master/julia-626d541de6/share/julia/Compiler/test/inline.jl:284 =# #= /Users/julia/.julia/scratchspaces/a66863c6-20e8-4ff4-8a62-49f30b1f605e/agent-cache/default-honeycrisp-R17H3W25T9.0/build/default-honeycrisp-R17H3W25T9-0/julialang/julia-master/julia-626d541de6/share/julia/Compiler/test/inline.jl:284 =# x end))))share/julia/Compiler/test/inline.jl:284github100% reliable0μs average duration
- LinearAlgebra/dense/issue #23366 (Int Matrix to Int power)/Tests for Int32 @test #= /cache/build/default-aws-aarch64-ci-1-4/julialang/julia-master/julia-470ff4860a/share/julia/stdlib/v1.13/LinearAlgebra/test/dense.jl:1135 =# @inferred((-I_) ^ -2) == I_stdlib/LinearAlgebra/test/dense.jl:1135github100% reliable0μs average duration
- LinearAlgebra/addmul/mul!(::Matrix{BigFloat}, ::LinearAlgebra.UnitLowerTriangular{Int64, S} where S<:AbstractMatrix{Int64}, ::LinearAlgebra.LowerTriangular{Float64, S} where S<:AbstractMatrix{Float64}, α, β)/α = 0.250686358235941764149856680887751281261444091796875, β = 0.250686358235941764149856680887751281261444091796875/adjoint and transpose/fa = adjoint, fb = identity @test ≈(collect(returned_mat), exp_val, rtol = rtol, atol = atol)stdlib/LinearAlgebra/test/addmul.jl:145github100% reliable0μs average duration