
Elastic improves Kibana
CI/CD run time by 70%
after switching to
Buildkite Pipelines
Elastic decreased pipeline run time from 3 hours to 55 minutes
while improving developer experience and decreasing costs
by migrating to Buildkite.

Overview

Elastic is the Search AI Company, enabling everyone to find the answers they
need in real-time using all their data, at scale. Elastic’s solutions for search,
observability, and security are built on the Elastic Search AI Platform, the
development platform used by thousands of companies.

In 2021, Elastic reached the practical limits of the legacy continuous integration
and continuous deployment (CI/CD) tool it was using. Buildkite offered a more
flexible, scalable platform that helped Elastic to decrease pipeline run times,
reduce infrastructure costs, and improve developer productivity to enable
engineering teams to deliver critical updates and new features on time.

Kibana was the first Elastic product to migrate its CI/CD pipelines to Buildkite.
Using Buildkite’s highly scalable architecture and unique dynamic pipelines
functionality, Elastic significantly reduced cloud infrastructure cost and
decreased the Kibana CI/CD pipeline run time from 3 hours to 55 minutes.

Elastic also took advantage of Buildkite’s developer-friendly UI to streamline
CI error resolution, turning the CI system from the least-liked system in its
developer experience surveys, to the most-liked.

Opportunity

Massively scalable CI, helpful and intuitive UI

Elastic has enjoyed much success over the last decade, and is known for
creating Search AI products that developers and enterprises can rely on.
As the business grew, the Elastic platform team found that the automation
and CI that served their developers well ten years ago needed updating to
meet the needs of the increased throughput and requirements of a modern,
sophisticated product engineering organization.

p1

�Designing the CI system
we needed to meet
our goals was so
much easier once
we moved to Buildkite...
Buildkite just works the
way you want it to—
in so many scenarios.”

© Buildkite Pty Ltd 2024. v1.8. Last updated 07/24. Email sales@buildkite.com

— �Brian Seeders,
Staff Engineer,
Elastic Kibana

Cut cost
Cloud infrastructure spend reduced
by nearly three quarters.

Accelerated build times
CI/CD pipeline execution time
decreased from 3 hours to 55 minutes.

Improved productivity
Developers have faster feedback loops,
can troubleshoot independently, and
spend more time on high-value work.

Industry

Software
Tech

GCP, Terraform,
TypeScript, Jenkins
Founded

2012
Customer since

2021

Case Study: Elastic, the Search AI Company

“�

https://www.elastic.co/
https://www.elastic.co/kibana
mailto:sales@buildkite.com
https://buildkite.com/home

p2© Buildkite Pty Ltd 2024. v1.8. Last updated 07/24. Email sales@buildkite.com

Features leveragedFirst generation CI/CD solutions, originally developed in an age when teams
deployed on a cadence of at most once a week, helped teams run automated testing
in a standard environment before deploying. Today, teams expect continuous
deployment (deploying multiple times an hour) across hundreds of engineers and
high volumes of code changes.

“Investing in our existing system to make it more reliable or faster didn’t make sense
for us,” says Brian Seeders, principal engineer at Elastic. “Buildkite provided the
capabilities we needed to easily meet the requirements of the business, and so the
age-old choice of build-versus-buy was an easy one. This has allowed us to focus
our efforts on innovation rather than maintenance.”

It was not just the CI system that hit a scale limitation. As the Kibana team grew,
so did the natural interdependencies between developer teams, which resulted in
increased complexity when triaging and resolving problems. Without a developer-
friendly self-service interface, Elastic’s team members spent an increasing amount
of time troubleshooting infrastructure logs across the organization to prevent
developers from waiting on cross-team dependencies.

After thoroughly evaluating the market, Elastic found that Buildkite’s massively
scalable architecture and unique dynamic pipeline generation would allow it to
create well-architected, easy-to-maintain pipelines, and also take advantage of cost
savings in cloud infrastructure. Buildkite’s built-in developer interface would also
improve CI troubleshooting to deliver a more positive developer experience.

Solution

Reducing costs and iteration cycles using Buildkite’s
dynamic pipelines and unlimited concurrency

“Designing the CI system we needed to meet our goals was so much easier once we
moved to Buildkite,” says Seeders. Elastic used Buildkite’s unlimited concurrency
to parallelize and scale out as much as they wanted. “This allowed us to break
things up into short, small steps and use spot VMs to reduce costs,” Seeders says.
“Next, we worked on bandwidth optimization. At the end of the day, we were able to
significantly reduce our cloud infrastructure costs.”

To reduce pipeline run time, the Kibana team leveraged Buildkite’s dynamic pipelines
capability to create a system that automatically splits test suites across a growing
number of Buildkite steps. “Previously, we had statically-defined groups of test
suites that someone would have to manually rebalance when CI got too slow,” says
Seeders. “Now, our CI system dynamically breaks up our tests into steps based on
their average historical runtime such that they all complete within our target build
time. It’s still running reliably, within our target, years later. This would not have been
practical with our previous CI solution.”

Dynamic pipelines
Decrease CI/CD run times by
customizing pipelines on the fly.
Use the full power of your preferred
programming language to generate
pipeline step logic, all based on
environmental scenarios encountered
as the pipeline is running.
Learn more →

Pipeline annotations
Increase developer productivity by
pushing feedback relevant to your
team in the build UI, such as test
result summaries, graphs of codebase
analyses, and links to artifacts.
Learn more →

Scalable orchestration
Scale infinitely with Buildkite’s
best-in-class orchestration engine.
Handle 100k+ connected agents
from your favorite cloud provider,
flexibly and efficiently.
Learn more →

Monorepo builds
Selectively build parts of your
codebase depending on which
components have changed. Use
our official plugin, or use dynamic
pipelines to implement your own
build and test selection strategy.
Learn more →

Pipeline dashboard
Monitor, control, and visualize all
your pipelines in one place with
Buildkite’s intuitive web app.
Take action from metrics that
show the health and performance
of your pipelines.
Learn more →

Elastic needed a flexible, scalable CI/CD
solution that would enable them to
reduce both pipeline run times and cost,
while at the same time free developers
to work independently.

Case Study: Elastic, the Search AI Company

mailto:sales@buildkite.com
https://buildkite.com/blog/concurrency-gates
https://buildkite.com/blog/retrying-ci-cd-steps-when-spot-instances-terminate
https://buildkite.com/blog/how-to-build-ci-cd-pipelines-dynamically
https://buildkite.com/blog/how-to-build-ci-cd-pipelines-dynamically
https://buildkite.com/docs/agent/v3/cli-annotate
https://buildkite.com/docs/tutorials/parallel-builds#running-multiple-agents
https://github.com/buildkite-plugins/monorepo-diff-buildkite-plugin?tab=readme-ov-file
https://buildkite.com/docs/pipelines/dashboard-walkthrough
https://buildkite.com/home

p3© Buildkite Pty Ltd 2024. v1.8. Last updated 07/24. Email sales@buildkite.com

To remove the need for developers to rely on other teams to troubleshoot CI errors,
Elastic turned to Buildkite’s pipeline dashboard. Out of the box, the Buildkite build
page (developers’ first port of call when troubleshooting) provides easy access
to logs and other information that was either confusing to find or completely
unavailable in Elastic’s previous CI. Elastic also took advantage of Buildkite’s
pipeline annotations, a feature that enables teams to push customized information
to the top of the build page. “Developers don’t have to search or go to other teams
for error information anymore,” says Seeders. “It’s just right there.”

This improved developer experience meant that CI team members no longer spent
as much time helping others track down logs and errors, freeing them to focus on
projects that bring more efficiency and value to the company. Elastic reports that
the migration itself was very smooth.

“We ended up not needing to re-implement a significant portion of our Jenkins
pipeline files because the functionality that we used to accomplish via extra Groovy
utilities came built-in with Buildkite pipelines,” says Seeders. “Buildkite just works
the way you want it to in so many scenarios.”

Next, Elastic is working to further reduce run times by selectively building and
testing only the parts of their codebase that changed, or were affected by a
change, rather than building and testing the full monorepo on every pull request.
Using Buildkite dynamic pipelines, an initial pipeline can triage further workflows
at runtime, only triggering the necessary pipelines, jobs, or commands specific
that build or change (rather than running through a series of preconfigured jobs
that may not be applicable).

Outcome

Supporting fast, cost-effective CI with Buildkite

“The impact on turnaround time for developers has been huge,” reports Seeders,
“We reduced the wait time on the pipeline that runs pull requests for Kibana from
3 hours to 55 minutes. That’s the difference between pushing a change and finding
out if it’s good tomorrow, and pushing a change and being able to continue your
work today.”

“From the engineers’ perspective, the improvement was immediate,” says Seeders.
“We’ve only gotten positive feedback about how much easier and faster the new
system is.”

�Buildkite provided the
capabilities we needed
to easily meet the
requirements of the
business, and so the
age-old choice of
build-versus-buy was
an easy one. This has
allowed us to focus our
efforts on innovation
rather than maintenance.”

“�

Case Study: Elastic, the Search AI Company

— �Brian Seeders,
Staff Engineer,
Elastic Kibana

mailto:sales@buildkite.com
https://buildkite.com/docs/pipelines/dashboard-walkthrough
https://buildkite.com/docs/pipelines/dashboard-walkthrough#build-page
https://buildkite.com/docs/pipelines/dashboard-walkthrough#build-page
https://buildkite.com/docs/agent/v3/cli-annotate
https://buildkite.com/blog/monorepo-ci-best-practices
https://buildkite.com/blog/monorepo-ci-best-practices
https://buildkite.com/home
https://buildkite.com/signup
https://buildkite.com/contact

